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CHAPTER I 

INTRODUCTION 

Many present  day a i r c r a f t  and guided m i s s i l e s  a r e  

equipped with low-aspect-ratio wings of a  d e l t a  plan form. 

Since a l l  of these a i r c r a f t  and miss i l e s  have high perform- 

ance c h a r a c t e r i s t i c s ,  a  f l u t t e r  a n a l y s i s  i s  usual ly  necessary. 

However, the f l u t t e r  ana lys i s  depends t o  a  g rea t  ex ten t  on 

the accuracy of the  f r e e - f r e e  n a t u r a l  modes and frequencies  

of the wing. These n a t u r a l  modes and f requencies  can a l s o  

be u s e f u l  i n  o ther  dynamic problems, such as  landing impact 

and gus t  loads.  In  the  past ,  when a i r p l a n e  wings usua l ly  

had high aspect  r a t i o s ,  the  n a t u r a l  modes and f requencies  

could, i n  general ,  be found by methods using simple beam 

theory. For a i rp lanes  with low-aspect-rat io  wings, the  

v ib ra t ion  problem i s  complicated by chordwise bending of t h e  

wing which must be taken i n t o  account. The methods using 

beam theory do not account f o r  t h i s  chordwise bending; thus, 

f o r  a  d e l t a  wing or  any low-aspect-ratio wing, recourse must 

be made t o  more e l abora te  methods t o  determine the  n a t u r a l  

modes and f requencies .  

In  the vibpat ion problem, one of the f i r s t  methods 

t h a t  presents  i t s e l f  i s  the  d i r e c t  s o l u t i o n  of the  p a r t i a l -  

d i f f e r e n t i a l  equat ions of equi l ibr ium of the s t r u c t u r e .  

However, even f o r  a  t h i n  i s o t r o p i c  p l a t e ,  the d i r e c t  s o l u t i o n  



of the  d i f f e r e n t i a l  equation i s  extremely complicated and 

s o l u t i o n s  f o r  only a  few i s o l a t e d  boundary condi t ions have 

been obtained, (See, f o r  example, r e f .  5. ) F or a  b u i l t - u p  

wing the d i f f e r e n t i a l  equation approach would present  insur-  

mountable d i f f i c u l t i e s .  Another method widely used i n  vibra-  

t i o n  a n a l y s i s  i s  based on the Rayleigh-Ritz p r inc ip le .  This 

p r i n c i p l e  says t h a t  the  maximum s t r a i n  energy minus the  

maximum k i n e t i c  energy of the wing must be an extremum. To 

apply t h i s  p r i n c i p l e  t o  a s p e c i f i c  s t r u c t u r e ,  the  f i r s t  s t e p  

i s  t o  express the s t r a i n  and k i n e t i c  energy of the  s t r u c t u r e  

i n  terms of the  d e f l e c t i o n ,  The d e f l e c t i o n  i s  then repre-  

sented by a  s e r i e s  expansion of funct ions  nr i th  unknown 

c o e f f i c i e n t s ;  the s t r a i n  energy minus the  k i n e t i c  energy i s  

d i f f e r e n t i a t e d  with respect  t o  each of the  unknown c o e f f i -  

c i e n t s  of the  s e r i e s  and the r e s u l t  s e t  equal  t o  zero. In  

general ,  i t  i s  necessary t o  use a  f i n i t e  s e r i e s .  If the  

s e r i e s  has n terms then the re  w i l l  be a  s e t  of n equa- 

t i o n s  from which the  n unknown c o e f f i c i e n t s  and the  

frequency can be found, The a p p l i c a t i o n  of the  Rayleigh- 

R i t z  method t o  a constant  th ickness  r ec tangu la r  p l a t e  i s  

presented by Tirnoshenko i n  reference  8 and a l s o  by D. Young 

i n  reference  12, The Rayleigh-Ritz method has a disadvantage 

i n  t h a t  the c o e f f i c i e n t s  of t h e  s e t  of equat ions a r e  
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i n t e g r a l s  which cons i s t  of t h e  funct ions  which were used i n  

the s e r i e s  expansion. The l a b o r  involved i n  eva lua t ing  

these  i n t e g r a l s  becomes excessive when very many terms a r e  

used i n  the s e r i e s .  

A method which shows considerable  promise f o r  the  

v i b r a t i o n  ana lys i s  of complicated s t r u c t u r e s  i s  the inf luence 

c o e f f i c i e n t  approach. An advantage t h a t  t h i s  method has 

over t h e  o ther  two methods i s  t h a t  the  complicated v i b r a t i o n  

problem i s  divided i n t o  s e v e r a l  simpler par t s :  (1) the  

determination of t h e  d e f l e c t i o n s  of the  s t r u c t u r e  i n  terms 

of the  s t a t i c  loads placed on i t ,  ( 2 )  t he  determination of 

the maximum dynamic loads a c t i n g  on the s t r u c t u r e ,  and 

( 3 )  the  s u b s t i t u t i o n  of the  dynamic loads f o r  the s t a t i c  

loads.  Another advantage of t h i s  method is t h a t  the  i n f l u -  

ence c o e f f i c i e n t s  can be used f o r  o ther  purposes, such as  

s t a t i c  a e r o e l a s t i c  problems, 

The determination of the  n a t u r a l  modes and f requencies  

by the inf luence  c o e f f i c i e n t  approach r e q u i r e s  t h a t  the  

inf luence c o e f f i c f e n t s  be known. For t h i n  s o l i d  wings of 

low aspect  r a t i o ,  s t a t i c  d e f l e c t i o n  analyses  have been made 

by using the  we l l  known p la te  theory.  A d i r e c t  a t t a c k  on 

the  p a r t i a l - d i f f e r e n t i a l  equation of a  constant  thickness  

p l a t e  by using the separa t ion  of va r i ab les  procedure i s  

given i n  re ference  21. A method which allows f o r  a gradual ly  

varying thickness  and chord i s  presented i n  re ference  2. 



In  r e f e r e n c e  2 ,  t h e  d e f l e c t i o n  of t h e  wing was r e p r e s e n t e d  

by a  power s e r i e s  i n  t h e  chordwise d i r e c t i o n  w i t h  t h e  

c o e f f i c i e n t s  of t h e  power s e r i e s  a s  f u n c t i o n s  of t h e  spanwise 

d i r e c t i o n .  The f i r s t  term of t h e  power s e r i e s  r e p r e s e n t s  t h e  

t r a n s v e r s e  displacement ,  t h e  second term r e p r e s e n t s  t h e  

t w i s t ,  t h e  t h i r d  t e rm r e p r e s e n t s  a  p a r a b o l i c  c u r v a t u r e  i n  

t h e  chordwise d i r e c t i o n ,  and s o  f o r t h .  I n  r e f e r e n c e  2, only  

t he  f i r s t  two terms of t h e  power s e r i e s  were used. An 

exp re s s ion  was t hen  w r i t t e n  f o r  t h e  t o t a l  p o t e n t i a l  energy 

of t h e  s t r u c t u r e ;  t h e  t o t a l  p o t e n t i a l  energy be ing  de f ined  

a s  t he  s t r a i n  energy of bending minus t h e  p o t e n t i a l  energy 

of the  l a t e r a l  l oads .  The exp re s s ion  f o r  t h e  d e f l e c t i o n  was 

then s u b s t i t u t e d  i n t o  t he  t o t a l  p o t e n t i a l  energy and t he  

c a l c u l u s  of v a r i a t i o n s  used t o  minimize t h e  t o t a l  p o t e n t i a l  

energy w i t h  r e s p e c t  t o  t he  c o e f f i c i e n t s  of t h e  power s e r i e s .  

When t h i s  was done, t h e r e  r e s u l t e d  two o rd ina ry  d i f f e r e n t i a l  

equa t ions  which cou ld  be so lved  t o  g ive  t h e  d e f l e c t i o n  i n  

terms of t he  l o a d s ,  A method f o r  determining t h e  d e f l e c t i o n s  

of p l a t e s  by s t a r t i n g  w i t h  t h e  p a r t i a l - d i f f e r e n t i a l  equa t ions  

of p l a t e  theory  and app ly ing  t h e  Gale rk in  procedure w a s  

p r e sen t ed  by Schuerch i n  r e f e r e n c e  3. Since  Schuerch 

expressed  t h e  d e f l e c t i o n  of t h e  wing by the  same power 

s e r i e s  of two terms a s  used i n  r e f e r e n c e  2, h i s  r e s u l t s  were 

very  s i m i l a r  t o  t hose  found i n  t h a t  r e f e r ence .  
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An extension of re ference  2 t o  include parabol ic  

chordwise d e f l e c t i o n s  i s  given i n  re ference  6 ,  The method 

of a n a l y s i s  of re ference  6 i s  i d e n t i c a l  t o  t h a t  used i n  

re ference  2. That is, the  t o t a l  p o t e n t i a l  energy of the  

p l a t e  with l a t e r a l  loads was wr i t t en ,  the  power-series shape 

s u b s t i t u t e d  i n t o  i t  and i t  was then minimized with r e spec t  

t o  the  c o e f f i c i e n t s  of the  power s e r i e s ,  In  t h i s  case,  

three  ordinary d i f f e r e n t i a l  equat ions r e s u l t e d ,  Experimental 

r e s u l t s  f o r  the  d e f l e c t i o n s  of s e v e r a l  t r i a n g u l a r  p l a t e s  of 

d i f f e r e n t  shapes under uniform s t a t i c  loads a r e  included i n  

t h i s  paper. When the t h e o r e t i c a l  d e f l e c t i o n s  using two and 

th ree  terms a r e  compared with t h e  experimental  de f l ec t ions  

i t  i s  seen t h a t  the re  i s  good agreement, with, of course, 

b e t t e r  agreement f o r  the three  term s o l u t i o n ,  

The methods mentioned above a re  appl icable  t o  t h i n  

low-aspect-ratio s o l i d  wings. I f  a  bu i l t -up  wing i s  very 

t h i n  and has c l o s e l y  spaced spa r s  and r i b s  and a  t h i c k  cover 

shee t ,  then i t s  inf luence  c o e f f i c i e n t s  can be found by 

considering i t  a s  a  s o l i d  wing and then using p l a t e  theory. 

If the  bu i l t -up  wing does not have c l o s e l y  spaced spa r s  and 

r i b s ,  then se r ious  e r r o r s  can r e s u l t  i f  p l a t e  theory i s  used. 

For these  cases,  i t  i s  necessary t o  use methods which account 

f o r  the  spars  and r i b s  a s  sepa ra te  e n t i t i e s  ins t ead  of 



cons ide r ing  t h e i r  s t i f f n e s s  a s  simply adding t o  t h e  cover 

s t i f f n e s s .  Seve ra l  such methods have appeared i n  t h e  

l i t e r a t u r e  and a r e  l i s t e d  below. 

(1) Schuerch 's  method ( r e f .  4 ) :  Schuerch has 

developed a  "wide beam theoryR based on s imple  beam 

equa t ions  b u t  which g i v e s  an approximate exp re s s ion  

f o r  t h e  d e f l e c t i o n s  of l ow-aspec t - r a t i o  wings. H i s  

method was t o  i d e a l i z e  t h e  s t r u c t u r e  i n t o  a  group of 

a l t e r n a t i n g  simple beams and t o r s i o n  t ubes  running 

i n  t h e  spanwise d i r e c t i o n .  The beams represeGt  t h e  

normal load  c a r r y i n g  a b i l i t y  of t h e  s p a r s  and cover.  

The t o r s i o n  tubes  r e p r e s e n t  t h e  s h e a r  c a r r y i n g  

c a p a c i t y  of t h e  cover. Since  t h e  wing i s  only  al lowed 

a  t r a n s l a t i o n  and r o t a t i o n ,  the  f l e x i b i l i t y  of t h e  

r i b s  i s  neg lec ted .  

( 2 )  Levy's method ( r e f .  1): Levy's method i s  

one of c o n s i s t e n t  deformat ions;  tha t  i s ,  t h e  l oads  i n  

terms of t h e  d e f l e c t i o n s  f o r  each  i n d i v i d u a l  wing 

component a r e  found. The r e s u l t i n g  loads  a r e  then 

added t o g e t h e r  s o  t h a t  t h e  l oads  a t  a l l  t h e  p o i n t s  on 

t h e  wing a r e  found i n  terms of a l l  t h e  d e f l e c t i o n s .  

The wing components t h a t  a r e  cons idered  *are :  ( a )  t h e  

s p a r s  and cover  shee t  i n  spanwise bending,  ( b )  t h e  

r i b s  and p a r t  of t h e  cover  s h e e t  i n  chordwise bending, 

and ( c )  t h e  cover s h e e t  i n  t o r s i o n .  
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( 3 )  Wil l iamfs method ( r e f .  10) :  William's has 

ou t l ined  a  method which uses the p a r t i a l - d i f f e r e n t i a l  

equat ions of p l a t e  theory.  However, ins t ead  of 

d i r e c t l y  so lv ing  the  p a r t i a l - d i f f e r e n t i a l  equat ions 

he rep laces  the d e r i v a t i v e s  with f i n i t e  d i f f e rences ,  

This r e s u l t s  i n  a l a rge  order simultaneous s e t  of 

equat ions which can be solved by conventional methods. 

The disadvantage of William's method i s  t h a t  i t  i s  

appl icable  only t o  wings which have c lose ly  spaced 

spars  and r i b s  and a  t h i c k  cover shee t .  

(4) Stein-Sanders method ( r e f .  7 ) :  The Stein-  

Sanders method i s  e s s e n t i a l l y  an extension of the  

method presented i n  r e fe rences  2 and 6 .  In  t h i s  

method, the spars  and r i b s  a r e  considered as  sepa ra te  

e n t i t i e s .  Three terms of the power s e r i e s  a r e  again 

used t o  represent  the d e f l e c t i o n  of the  wing, but t h e  

t o t a l  p o t e n t i a l  energy t o  be minimized now inc ludes  

the  s t r a i n  energy of the  spa r s  and r i b s .  In order  t o  

s impl i fy  the c a l c u l a t i o n s  and make the  procedure 

r e a d i l y  appl icable  t o  any wing, d i f f  erence-equat ion 

methods a re  used i n  the  process of expressiflg and 

minimizing t h e  p o t e n t i a l  energy. Thus, the re  i s  

y ie lded  a sys tern of simultaneous a lgebra ic  equat ions 

which r e l a t e  the d e f l e c t i o n s  t o  the l a t e r a l  loads ,  



The coef f ic ien t s  which r e l a t e  the def lec t ions  t o  the 

l a t e r a l  loads are ca l l ed  the s t i f f n e s s  coe f f i c i en t s  

and the matrix of the s t i f f n e s s  coef f ic ien t s  i s  ca l l ed  

the s t i f f n e s s  matrix. The influence coef f ic ien t  

matrix i s  obtained by inver t ing the s t i f f n e s s  matrix. 

I n  the present paper, a  comparison w i l l  be made 

between the experimental and theo re t i ca l  na tura l  modea and 

frequencies of v ibra t ion  of a buil t -up d e l t a  wing, The 

theo re t i ca l  ca lcu la t ions  w i l l  employ the influence coeff i- 

c ien t  approach where the influence coe f f i c i en t s  are obtained 

from the method presented by S t e in  and Sanders ( r e f .  7 ) .  As 

has been mentioned previously, the Stein-Sanders method 

t r e a t s  the cover sheets ,  spars ,  and r i b s  as separate e n t i t i e s .  

The s t r a i n  energy expression of these terms an8 also a  general 

out l ine  of me Stein-Sander8 method i s  given i n  Appendlx A. 



CHAPTER I1 

DESCRIPTION OF BUILT-UP DELTA WING SPECIMEN 

The bu i l t -up  d e l t a  wing specimen t o  be analyzed i s  

considered r e p r e s e n t a t i v e  of t h e  load car ry ing  s t r u c t u r e  of 

a  r e a l  d e l t a  wing. The cen te r  s e c t i o n  of the wing, where 

the fuse lage  would f i t ,  i s  of cons tant  th ickness .  Outboard 

of t h i s  cen te r  sec t ion  t h e r e  is  a  constant  spanwise t ape r ;  

the chordwise sec t ions  a r e  of constant  thickness .  The 

i n t e r n a l  s t r u c t u r e  c o n s i s t s  of spa r s  and r i b s .  (See 

Figure I.) There a r e  f i v e  spa r s  which a r e  perpendicular t o  

the cen te r  l i n e  of the  wing and one spar  which i s  i n c l i n e d  

a t  a 4 5 O  angle t o  the cen te r  l i n e .  Spars 1, 2, and 3 have 

an I type c r o s s  s e c t i o n ;  spa r s  4, 5, and 6 a r e  channel 

shaped. The r i b s  a r e  loca ted  a t  8-inch i n t e r v a l s  and a r e  

p a r a l l e l  t o  the  cen te r  l i n e  of the  wing. A l l  of the  r i b s  

a re  channel shaped. It should be noted t h a t  i n  Figure 1, 

r i b  No. 2  i s  shown as only one r i b ;  however, i n  the a c t u a l  

wing, two r i b s  which were very c l o s e  together  were loca ted  

there.  Several  o ther  small  changes have been made i n  drawing 

t h e  idea l i zed  s t r u c t u r e  shown i n  Figure 1, but these  changes 

should not e f f e c t  the  accuracy by which t h i s  i d e a l i z e d  

s t r u c t u r e  r ep resen t s  the a c t u a l  s t r u c t u r e .  

The i n t e r n a l  s t r u c t u r e  of the wing was covered by a  

constant  thickness  sheet  of aluminum which was r i v e t e d  t o  t h e  
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FIGURE 1 

INTERNAL STRUCTURE OF WING 



spars  and r i b s .  There a r e  a t o t a l  of 16 s t r i n g e r s  which 

were r i v e t e d  t o  the  outs ide of the  cover. The loca t ion  of 

these s t r i n g e r s  i s  shown i n  Figure 2. 

A b r i e f  discussion of the phys ica l  p roper t i e s  and the  

s t i f f n e s s  and mass p roper t i e s  of the  wing components i s  

given below. 

(1) ~ h g s i c a l  p roper t i e s  : The wing i s  constructed 

e n t i r e l y  of 2 . 4 ~ ~  aluminwn a l loy .  The phys ica l  

p roper t i e s  of &ST t h a t  w i l l  be needed i n  t h i s  paper 
4 

a r e  shown below. (See r e f .  13. ) 

2 
Young's modulus of e l a s t i c i t y ,  lb/in.  . . 10.6 x 10 6 

Weight, lb / ln  . 3 . . . . . . . . . . . . .  0.100 

Poisson's r a t i o  . , . . . . . . . . . . . 1/3 

( 2 )  Spars: The weight of the  spars  was found by 

using a c t u a l  measured dimensions and dimensions which 

were s l i g h t l y  changed from t h e  o r i g i n a l  apecif  ioations. 

In t h i s  way, a c a l c u l a t e d  spa r  weight was obtained 

which was equal  t o  the  measured apar weight. By 

using these  dimensions, the  weight per inch  and moment 

of i n e r t i a  of the  spars  a t  8-inch i n t e r v a l s  along the  

span were ca lcu la ted  and a r e  t abu la ted  i n  Table I. 

The weight l i s t e d  i s  the  weight per  inch  of a croas 

s e c t i o n  normal t o  t h e  y-axia and includes the  weight 

of the  heads of the r i v e t s  which were used t o  f a s t e n  

the  cover t o  the spars .  The rivet-head weight was 



FIGURE 2 

STRINGER LOCATION 

Stringer No. 
16 
15 
14 
13 
12 
I I 
10 

x coordinate 
91.31 
86.4 4 
81.56 
76.6 9 
66.75 
62.25 
57.75 

9 53.25 
8 42.75 
7 38.25 
6 33.75 
5 29.25 
4 18.75 
3 14.25 
2 9.75 
I 5.25 



TABm I 

SPAR WEIGEI AND M@4EN!l? OF INlRTu 



14 
determined by accura te ly  approximating the number of 

r i v e t s  and then  mul t ip ly ing  by the  weight of t h e  heads 

of one r i v e t ,  The moment o f  i n e r t i a  l i s t e d  i n  Table I 

i s  f o r  a c ross  s e c t i o n  normal t o  the  spar.  

( 3 )  Riba: The weight and moment of i n e r t i a  of 

the  r i b s  a re  given i n  ~ a b i e  11, The weight l i s t e d  i s  

the weight of each r i b  and inc ludes  the  weight of the  

cover- r ib  r i v e t  heads. 

(4) Cover sheet: The nominal cover sheet  th ick -  

ness  apeu i f i ed  was 0.072 inch,  but the  measured 

average thickness  of the  cover was found t o  be 0.0696 

inch.  A dimension which w i l l  be u s e f u l  i n  l a t e r  

c a l c u l a t i o n s  i s  the h e i g h t  of t h e  middle plane of t h e  

cover above the  n e u t r a l  sur face  of the wing, This 

height  which i s  c a l l e d  z i s  t abu la ted  i n  Table 111. 

( 5 )  St r inger s :  The s t r i n g e r s  a re  j/& x j/4 x 1/8 

inch s tandard angles .  The measured c ross  s e c t i o n a l  

a rea  of the s t r i n g e r s  was found t o  be 0.1689 square 

inch. This area was obtained by f i r s t  weighing a l l  

the s t r i n g e r s  and then dividing t h i s  weight by the  

product of the  s t r l n g e r  length  and dens i ty .  The 

weight of one s t r i n g e r  waa then  found by mal t ip ly ing  

the measured area by the  d e n s i t y  and adding t h e  weight 



TABU I1 

RIB WEIGHP AND MOMENT OF INERTIA 

C 

Rib No. 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

9 

. 
W 
LII 

3.3690 
3.3690 
9.7126 
2 .9136 
2.4650 
2.0867 
1.7821 
1.4446 
1.1811 . 9026 
.6691 
.4706 
.2820 
1135 

. 
i 
in. 4 

1.0604 
1.0604 
3.0694 
.go64 
7677 
6435 
5331 
4356 
3504 
2767 
.2136 
.1604 
.1164 
.0807 



COVER SHEET HEIGHT 

Stat ion 
Y 

in .  

0 
8 

16 
24 
3 2 
40 
48 
56 
64 
72 1.6238 
80 1.4678 
88 1.3119 
96 1.1560 

104 1.0001 
112 .8442 

I 

Cover height 

z~ 
i n .  

2.7152 
2.7152 
2.7152 
2 5593 
2.4033 
2.2474 
2.0915 
1- 9356 
1 7797 

*- 



of the cover-stringer r i v e t  heads; t h i s  weight was 

0.01920 lb/in.  The moment of i n e r t i a  of one s t r i nge r ,  
A 
I, about the neu t ra l  surface of the wing and the  

number of s t r i nge r s  on the  top and bottom cover a t  

8 inch sganwise in terval8  are  l i s t e d  i n  Table I V .  

( 6 )  Reinforcements and spar t o  r i b  r i v e t s :  In 

the construct ion of the de l t a  wing, severa l  small 

reinforcement s were added a t  c r i t i c a l  points ,  and 

t h e i r  weight should be taken in to  account. Also, the 

rivet-head weight of the r i v e t s  uaed t o  connect the  

spars t o  the r i b s  should be included i n  the  weight 

analysis .  The locat ion and weight of the re inforce-  

ments and the spar-to-rib r i v e t s  are  tabulated i n  

Table V. 

Table V I  i s  included to  show the t o t a l  ca lcula ted 

weight of the various components and the i r  percentage weight . 
of the t o t a l  ca lcula ted weight. By adding up the weight of 

the components, the t o t a l  oalcula ted weight was found t o  be 

about 408.6 pounds. It i s  in te res t ing  t o  note t h a t  the r i v e t  I I 

head weight was about 5 per cent  of the t o t a l  weight. A I 

t o t a l  measured weight of 409 pounds was obtained by weighingn 

the wing a f t e r  it was completely assembled. 



TABLE I V  

STRINGER MOMENT OF INERTIA 



TABLE V 

WEIGHT OF REINFORCEMENTS AND SPAR TO RIB RIVETS 

C 

Station 
Y 
in. 

o 
8 
16 
24 
32 
40 
48 
56 
64 
72 
80 
88 
96 
104 
112 

J 

I 

Chordwise location 
. 

x = o 
( 0 , )  

lb 

0.02634 
.02634 
.05814 
.02470 
.02163 
01999 
.01693 
.01387 
.01223 . 009 18 
.00754 
.00284 
.00284 
.00284 
0 

x = 24 

w(') (24,y) 
lb 

0.02634 
.02634 
.05814 
.O247O 
.02163 
. 01999 
.01693 
,01387 
.01223 
.00918 
.00754 
.00284 

x = 48 

~(')(48,~) 
lb 

0.02634 
.02634 
.05814 
.. 02470 
.02163 
01999 
.01693 
.01387 
.00567 

x = 72 

w(') (72,y) 
lb 

0 00993 
00993 
.01986 
00993 
.0085 1 
.0085 1 

- 

x = 96 

~('~(~6,~) 
lb 

0.48893 
00993 
.28836 

t 



c-m WEIGHT OF WING COMPONENTS 

t 

Per  cent 
of t o t a l  

21.34 
14.23 
44.12 
19.66 

.43 

.22 

100.00 
3 

I 

I t e m  

Spars 
R i b s  
Cover sheet 
Stringers 
Rein.f orcements 
Spar t o  r i b  rivets 

T o t a l  weight 

Weight 
l b  

87.181 
58 154 

180.287 
80.313 
1.748 

.go0 

408.583 



CHAPTER I11 

DESCRIPTION OF TEST SET UP 

The experimental  determination of t h e  n a t u r a l  f r e e -  

f r e e  modes and f requencies  of the  bu i l t -up  d e l t a  wing was 

c a r r i e d  out by M r .  Eldon E. Kordes i n  the  S t ruc tu res  Research 

Laboratory of the  NACA, To obta in  the  f r e e - f r e e  condition,  

the  wing was supported by two wires  which were connected t o  

an overhead sca f fo ld .  A p i c t u r e  of the  wing i n  i t s  f r e e -  

f r e e  condi t ion i s  shown i n  Figure 3.  The wing was v ibra ted  

by f o u r  symmetrically placed shakers connected t o  the  wing. 
4 

These shakers could apply a maximum f orce of 50 pounds and 

had a maximum t r a v e l  of 1 inch; t h e i r  frequency range was 

from 2-1/2 t o  500 cycles  per second. The shakers were p a r t  

of the  DbB Manufacturing Co. C-1-S e x c i t e r  system. This 

system allowed c o n t r o l  of t h e  f o r c e  app l i ed  by each shaker, 

The c o n t r o l  panel of the  e x c i t e r  system is  shown on the  l e f t  

s i d e  of Figure 3. 

The phase r e l a t i o n  between d i f f e r e n t  poin ts  on the  

wing and t h e  amplitude of t h e  po in t s  during a v i b r a t i o n  t e s t  

was obtained by mounting MB Type 124 se l f -genera t ing  v e l o c i t y  

pickups on the  wing, These pickups a r e  shown i n  Figure 3 .  

The "piokups" on t h e  l e f t  s i d e  of the  wing wi th  no lead-in 

wires a t tached t o  them a re  weights which were uhsed t o  balance 

the  weight of the  pickups on the r i g h t  s ide .  However, two 





pickups were loca ted  on the  l e f t  s i d e  to 'provide  a check on 
a 

the  symmetry of the  modes. The output vol tage from the  pick- ! 

ups was f e d  i n t o  an osci l lograph.  The con t ro l  panel ueed t o K  

s e l e c t  the  pickup vol tage i s  the  small  cabinet  i n  Figure 3.  

varylng cne rrequency of t h s  shakers u n t i l  the t r a c e  of the  

pickup vol tage on t h e  osc i l lograph reached a maximum ampli- 

tude. The voltage from a pickup a t tached t o  a shaker was 

fed  i n t o  a C. G. Conn model GT-2 Stroboconn from which the  

frequency i n  cycles  per second was determined. The node 

l i n e s  were found by moving a por table  pickup over t h e  wing 

u n t i l  t h e  osc i l lograph showed t h a t  the  amplitude was zero. 

Uuv wAAnnuru auu  AUKU UPS azGacneaj tnererore ,  i t  i s  neceS8aPy 

t o  include t h e i r  weight i n  with the  wing weight t o  be used 

L pounas ana each pickup weighed 0.7 pound. The t o t a l  

weight of these  accessor i e s  i s  shown below. 

4 Shaker attachments, l b  . . . . . . . . . . . . . .  8.0 

26 ~ i c k u p s ,  ib 18.2 . . . . . . . . . . . . . . . . . . .  
Total  accessory weight, l b  . . . . . . . . . . .  26.2 



The t o t a l  weight of the wing during a v i b r a t i o n  t e s t  i s  

shown below. 

Measured CaZculated 

. . . . . . . .  Tota lwe igh t ,  i b . .  409 L08.583 

. . . . . . . .  Acceasory weight, l b  26.2 26.2 

Total  weight during a v i b r a t i o n  

. . . . . . . . . . . . .  t e s t ,  l b  435.2 434 .?a3 

Since i t  i s  important t o  know t he  d i s t r i b u t i o n  of the  shaker 

attachments and pickups i n  t h e  t h e o r e t i c a l  ana lys i s ,  t h e  

loca t ion  and weight of t h e  shaker attachments and pickups 

are given i n  Table VII. 



TABLE VII 

SlWER A T T A C m  AM) PICKW WEIGHT 

Chordwise location 

Station = x = 24 x = 72 x = 48 
Y 

x = 96 
in. ~(~)(07Y) W(t)(249~) ~ ( ~ ~ ( 4 8 , ~ )  ~(~'(~2,y) ~ ( ~ ) ( ~ 6 , ~ )  

lb lb lb lb lb 

16 70 970 70 
40 

070 070 
70 70 2.00 

64 
-70 

970 70 
88 

70 
2.00 

112 
70 

970 
A 



CHAPTER IV 

DISCUSSION OF INFLUENCE COEFFICIENT APPROACH 

Since the  t h e o r e t i c a l  n a t u r a l  modes and f requencies  of 

the d e l t a  wing a r e  t o  be found by t h e  inf luence c o e f f i c i e n t  

approach, i t  i s  f e l t  worthwhile t o  consider  t h i s  method i n  

d e t a i l  f o r  a  simple example problem. The example problem t o  

be t r e a t e d  i s  t h a t  of determining the  n a t u r a l  modes and 

f requencies  of symmetric v i b r a t i o n  of a  f r e e - f r e e  beam with 

va r i ab le  s t i f f n e s s  p roper t i e s ,  A ske tch  of the  beam i n  a  

symmetrically de f l ec ted  pos i t ion  i s  shown below. In  t h i a  

ske tch  q i s  the  d i s t ance  of any point  on the  beam above 

the  cen te r  l i n e  point  and w i s  the a c t u a l  d e f l e c t i o n  of 

the beam above i t s  pos i t ion  a t  r e s t .  

When the  n a t u r a l  modes and f requencies  a r e  t o  be 

found by the  inf luence c o e f f i c i e n t  approach, the  f i r s t  t h ing  

needed i s  the  inf luence c o e f f i c i e n t s .  However, f o r  a 

26 





ooncentrated loads placed a t  even i n t e r v a l s ,  E ,  such as 

shown below. 

The nf ixedn inf luence c o e f f i c i e n t s  w i l l  be found by the  

method used by S te in  and Sanders i n  re ference  7. In t h i s  

example, the  power a e r i e s  f o r  the  def l a c t i o n  w i l l  only have 

one term and the  expression f o r  t h e  t o t a l  p o t e n t i a l  energy 

w i l l  only contain the  energy of bending of the  beam. If the 

beam i s  ac ted  on by concentrated loads,  then the  t o t a l  

p o t e n t i a l  energy of the  beam, v, i a  

The p r i n c i p l e  of minimum p o t e n t i a l  energy says t h a t  the  

d e f l e c t i o n  shape which s a t i s f i e s  equi l ibr ium i s  the  one f o r  

which n i s  a  minimum. The method used by S te in  and Sandera . 



t o  minimize v was first  t o  r e p l a c e  ' t h e  i n t e g r a t i o n  by a 

summat i on  i n  accordance w i t h  t h e  well-known t r a p e z o i d a l  r u l e ,  

For t h i s  example, t h e  t o t a l  p o t e n t i a l  energy may now be 

w r i t t e n  

If a  p a r a b o l i c  curve i a  passed through t h e  d e f l e c t i o n  curve,  

them t h e  second d e r i v a t i v e  of t h e  d e f l e c t i o n  a t  s t a t i o n  0 

may be w r i t t e n  i n  d i f f e r e n c e  form as 

b u t ,  s i n c e  = 1 and riO = 0 

FOP any s t a t i o n  m t h e  second d e r i v a t i v e  i s  
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The above ekgresaions f o r  the  second d6rivativ.e; a r e  now 

s u b s t l t u t e d  i n t o  t h e  expression f o r  the  t o t a l  p o t e n t i a l  

energy given by equation (1). This r e s u l t s  i n  

It should be not iced  t h a t  r ep lac ing  the  second d e r i v a t i v e s  

by d i f fe rences  introduces Vhe d e f l e c t i o n  of the  beam a t  one 

s t a t i o n  pas t  the  t i p  i n t o  the  energy expression. 

The d e f l e c t i o n  shape which s a t i s f i e s  equi l ibr ium is  

obtained by d i f f e r e n t i a t i n g  n wi th  r e s p e c t  t o  each def lec-  

t i o n  and then s e t t i n g  the  r e s u l t i n g  equat ions equal  t o  zero. 

Thus, f o r  vl 

f o r  q, 



The N + 1  equations whiah r e s u l t  from the above minimization 

p r o c e s s  can be w r i t t e n  i n  t h e  f o l l o w i n g  m a t r i x  f o r m  

where 
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i n  which (where the number of rows and columns a r e  ind ica ted  

on the  r i g h t )  

! 

[D] = transpose of k] 
4 

The A matrix i n  equation ( 2 )  i s  c a l l e d  the  s t i f f n e s s  

matr ix  s ince  i t s  c o e f f i c i e n t s  give the load a t  one point 

necessary t o  cause a u n i t  d e f l e c t i o n  a t  another poin t .  

However, what i s  wanted i s  t h e  d e f l e c t i o n s  i n  terms of the  

loads or the  inf luence  c o e f f i c i e n t  matr ix ,  This mat r ix  can 

be found by i n v e r t i n g  the  s t i f f n e s s  matrix.  Multiplying 



equation ( 2 )  by the  inverse  of the  A mat r ix  gives 

where A~ i s  the  inf luence c o e f f i c i e n t  matrix. The matr ix  

equat ion ( 3 )  i s  a simultaneous s e t  of equat ions which give 

the d e f l e c t i o n s  i n  terms of the  loads.  Inasmuch a s  we a re  

not i n t e r e s t e d  i n  the d e f l e c t i o n  a t  the s t a t i o n  past  the  t i p ,  

the l a s t  equat ion or the  l a s t  row of equat ion ( 3 )  can be 

de le ted .  Also, t h e  l a s t  column of the  A - ~  matr ix  can be 

omitted s ince  t h i s  column i s  mul t ip l i ed  by the  load  a t  s t a -  

t i o n  N+1 which i s  zero. During a symmetric f r e e - f r e e  

v ib ra t ion  of the  beam, the  d e f l e c t i o n  of t h e  oenter  l i n e ,  

WO, w i l l  not  be zero. Thus, a place must be provided i n  the  

matr ix  equat ion f o r  t h i s  d e f l e c t i o n  and i t s  correeponding 

load Po. Although a t  this time t h e  d e f l e c t i o n  wo cannot 

be determined, i t  can be added t o  the matr ix  equation and 

i t s  value determined l a t e r  by considering t h e  dynamic 
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equi l ibr ium condi t ion  of the  beam during a symmetric vibra-  

t ion .  The d e f l e c t i o n  wo i s  added t o  matrix equat ion ( 3 )  

by f i r s t  adding a row and column of zeros s o  t h e  f i r s t  row 

and column of the  A ' ~  matr ix  i s  zero, and then adding a 

column of no's t o  the  r i g h t  s i d e  of equation ( 3 ) .  After  

these operat ions and the  operat ions t o  omit t h e  d e f l e c t i o n  

a t  s t a t i o n  N+1 have been c a r r i e d  out, equation ( 3 )  may be 

writ t e n  

where A is  derived from A-I by d e l e t i n g  the  l a s t  row and 

column and adding a row and column of zeros. 

Up t o  t h i s  point,  t he  def l ec t iona  of the beam have 

been found i n  terms of concentrated s t a t i c  loads a c t i n g  on 



3.5 

i t .  When the beam is  i n  a  n a t u r a l  v ib ra t ion  the re  w i l l  be no 

s t a t i c  loads,  but  the re  w i l l  be dynamic loads.  These dynamic 

loads can be found by employing d  'klembert I s  p r i n c i p l e  which 

s t a t e s  t h a t  every s t a t e  of motion may be considered a t  any 

i n s t a n t  a s  a s t a t e  of equi l ibr ium i f  appropr ia te  i n e r t i a  

fo rces  a r e  introduced. The dynamic loads a t  any point  y  

may now be w r i t t e n  

The above equat ion gives the  dynamic loads a t  any poin t  of 

the beam. However, what i s  requi red  f o r  t h i s  ana lys i s  i s  

the  dynamic loads a s soc ia ted  wi th  each s t a t i o n .  These loads 

can be found by concentrat ing the  d i s t r i b u t e d  mass of the  

beam a t  the  s t a t i o n s .  

The dynamic load a t  any s t a t i o n  m w i l l  be 
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and i f  matrfx no ta t ion  i s  used, t h e  dynamic loads a t  a l l  t he  

s t a t i o n s  w i l l  be 

If the dynamic loads given by equation ( 5 )  a re  s u b s t i t u t e d  

i n t o  equation (4), then the  d e f l e c t i o n  of t h e  beam i n  terms 

of the  dynamic loads i s  found t o  be 

The unkn~wn def l ec t ion ,  wo,  can be solved f o r  by using the  

dynamic equi l ibr ium condit ion t h a t  during f r e e - f r e e  v i b r a t i o n  



. . 
the sum of all the loads on the beam must be zero, or 

which may also be written 

To apply this dynamic equilibrium conaltlon, equation ( 6 )  is 

multiplied by the row matrix 1 M and then set equal to 

zero. This yields 

Now solving for wo from the above equation and substituting 

(I it into equation (6) gives 
i 



where 

[ c ]  = 1.1 - 1 I 1 , - -  IJIIM;]III 

The def l ec t iona  and frequency f o r  the  f i r s t  symmetric 

f r e e - f r e e  mode of the  beam can now be found by applying a 

matr ix  i t e r a t i o n  t o  equat ion ( 7 ) .  In the matr ix  i t e r a t i o n ,  

a normalized t r i a l  mode shape i s  s u b s t i t u t e d  i n t o  the r i g h t  
4 

hand s i d e  of equation (7  ), and the  r e s u l t i n g  mode shape on 

the  l e f t  hand s i d e  found. This mode shape i s  then s u b s t i -  

tu t ed  i n t o  the r i g h t  hand s i d e  and t h e  l e f t  hand mode shape 

again found. This procedure i s  continued u n t i l  the mode 

shape obtained on the  l e f t  hand s i d e  i s  the  same a s  the mode 

shape on the  r i g h t  hand s ide .  The s o l u t i o n  f o r  the  higher  

modes and f requencies  can be found by using the  well-known 

or thogonal i ty  condi t ion t h a t  

t o  sweep the lower mode components from the higher  mode 

shapes. A method which does not need the  or thogonal i ty  

condi t ion (and i s  theref  ore more' genera l ly  appl icable  ) i s  

given by Nielandt i n  reference 9. Ins tead  of an orthogo- 

n a l i t y  r e l a t i o n ,  Wielandt used a l i n e a r  combination of the  



lower mode shapes i n  the  sweeping process.  A disadvantage of 

Wielandt 1s method i s  t h a t  although the f requencies  are found 

d i r e c t l y ,  the  mode shapes obtained a re  transformed modes o r  

l i n e a r  oombinations of the  lower mode shapes. If the  a c t u a l  

mode ahapes a re  wanted, then they can be obtained from the  

transformed modes. 



CHAPTER V 

CALCULATION OF THE THEORETICAL FREE-FREE 

MODES AND FREQUENCIES 

Stein-Sanders Equations 

a & $ s l  :8 In  reference 7,  S te in  and Sanders have presented a 

method by which t h e  inf luence c o e f f i c i e n t  matr ix  of a 

bu i l t -up  d e l t a  wing can be determined. Thia matrix. i s  

obtained by i n v e r t i n g  the s t i f f n e s s  matrix,  which i s  given 

d i r e c t l y  by the  Stein-Sanders method. The stiffness matr ix  

is  found f o r  a wing supported i n  two d i f f e r e n t  condi t ions ;  

these  two support  condi t ions area (1) the wing r i g i d l y  

clamped a t  t h e  t r a i l i n g  edge of the  cen te r  l i n e  wi th  

symmetrical loading, and ( 2 )  the  wing simply supported a t  

two poin ts  on the  t r a i l i n g  edge with antisymmetrical  loading 

(g iv ing  zero d e f l e c t i o n  along the  cen te r  l i n e ) .  The s t i f f -  

ness matr ix  whioh i s  obtained f o r  the wing i n  any one of 

these supported condi t ions i s  c a l l e d  the  "fixedtt  s t i f f n e s s  

;natrix. Again, as was shown i n  the chapter  "Discuseion of 

Influence Coeff ic ient  Appraachn, the  nf ixed" s t i f f n e s s  

matr ix  can be used t o  f i n d  t h e  f r ee - f ree  n a t u r a l  modes and 

frequancies .  The 'f fxedn a t i f f n e a s  .natr ix  der ived f o r  the  

f i r s t  condi t ion i s  s u i t a b l e  f o r  the  symmetric f r a e - f r e e  

modes and the wflxedn atiffnsss matrix f o r  the second 

condit ion i s  s u i t a b l e  f o r  the  a n t i s y m e t r i o  f r e e - f r e e  modes. 

40 
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The d e f l e c t i o n s  of the  f i x e d  wing a r e  represented  by 

the  fol lowing power s e r i e s  of t h r e e  terms 

The coordinate  system used t o  wr i t e  equat ion ( 8 )  i s  shown 

i n  Figure 4. The phys ica l  meaning of the  c o e f f i c i e n t s ,  or  

the  genera l ized  de f l ec t ions ,  i n  the above power s e r i e s  is: 

QO(y) r ep resen t s  the t ransverse  displacement of the  t r a i l i n g  

edge, l ( y )  r ep resen t s  the  t w i s t  of the  wing, and ~ ( y )  

r ep resen t s  the  parabol ic  curvature i n  t h e  chordwise d i r e c t i o n .  

As i n  the  exaxiple problem, the  wing d e f l e c t i o n s  a r e  detep- 

mined a t  a  number of equal ly  spaced s t a t i o n s  along t h e  span. 

For t h i s  wing, i t  i s  f e l t  t h a t  s t a t i o n  poin ts  loca ted  at 

every o ther  r i b  a r e  s u f f i c i e n t .  This y i e l d s  a value of the 

i n t e r v a l  E equal  t o  16 inches.  The l oca t ion  and number of 

these  s t a t i o n  poin ts  i s  shown i n  Figure 5. Therefore, f o r  

the d e l t a  wing, t he  d e f l e c t i o n  shape a t  any spanwise s t a t i o n  

m i s  represented  by a  power s e r i e s  of t h e  form 

In the d e f l e c t i o n  a n a l y s i s  of a  beam, the  l a t e r a l  

loads e n t e r  i n t o  t h e  equat ions simply a s  loads.  However, i n  



FIGURE 4 
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the  Stein-Sanders method, the  l a t e r a l  loads which a r e  

d i s t r i b u t e d  over t h e  d e l t a  wing e n t e r  i n t o  the  equat ions aa 

loads,  torques,  and second moments. This i s  because the  

d e f l e c t i o n  shape i s  represented  by a power s e r i e s  of t h r e e  

terms. If p (x ,y )  i s  the  d i s t r i b u t e d  l a t e r a l  load a t  any 

point x,y then the  loads, torques,  and seoond moments 

about the  x = 0 a x i s  may be w r i t t e n  

where pn(y)  i s  c a l l e d  the  genera l ized  load; p l (y)  repre-  

s e n t s  the load, p2(y)  the torque, and p5(y)  the  second 

moment a t  s t a t i o n  y. The general ized load defined by 

equation (10)  i s  continuous over the span; however, the  

genera l ized  loads used i n  the  a t i f f n e a s  matr ix  are conuen- 

t r a t e d  a t  the  s t a t i o n  poin ts .  For t h i s  reason, i t  i s  

necessary t o  concentrate  p n ( y )  .a t  t he  s t a t i o n  poin ts .  If 

the  d i s t ance  between s t a t i o n  poin ts  is  e and i f  pn(ym) 

Is t h e  value of pn(y )  a t  s t a t i o n  m, then the  concentrated 

general ized loads a t  s t a t i o n  m a r e  



The procedure used by S te in  and Sanders t o  f i n d  the  

s t i f f n e e s  matr ix  was t o  f i r s t  wr i t e  the  expreasion f o r  t h e  

t o t a l  p o t e n t i a l  energy of t h e  bu i l t -up  wing. The de f l ec t ion  

shape given by equat ion ( 9 )  was then introduced i n t o  the  

t o t a l  p o t e n t i a l  energy expreasion, and the  d e r i v a t i v e s  of 

the Qfs w r i t t e n  i n  d i f f e rence  form. The i n t e g r a t i  on i n  t h e  

spanwise d i r e c t i o n  was then replaced  by a summation i n  

accordance wi th  the  t r apezo ida l  r u l e .  me minimization of 

the  r e s u l t i n g  t o t a l  p o t e n t i a l  energy expression was then 

c a r r i e d  out.  This r e s u l t e d  i n  a s e t  of simultaneous alge-  

b r a i c  equat ions i n  which the  genera l ized  deflections., On*, 

a t  t h e  s t a t i o n  po in t s  were r e l a t e d  t o  genera l ized  loads.  

Symmetric nf ixedw inf luence c o e f f i c i e n t  equation.- 

The "f ixed s t i f f n e s s  matr ix  t o  be used t o  determine the  

symmetric modes and frequencies  i s  found f o r  a wing which i s  

r i g i d l y  clamped at the t r a i l i n g  edge of the oenter  l i n e .  A 

sketch  of the  wing clamped i n  t h i s  manner i s  shown i n  t h e  

following sketch.  



Now t h a t  the s t a t i o n  po in t s ' have  been se lec ted ,  the  

unknown genera l ized  d e f l e c t i o n s  i n  the  matr ix  equation f o r  

the  f i r s t  condi t ion  a r e  sol, . . . , 408, 8 

and eZ0, . . , aZ7; the  known genera l ized  loads a r e  

Pll, r P17, Pzlr . . . , P27, and P31, . . • , 9 7 '  
It should be not iced  t h a t  although aO, ax, and e2 a t  the  

s t a t i o n  pas t  t h e  t i p ,  s t a t i o n  8, ahpear i n  the  o r i g i n a l  

Stein-Sanders mat r ix  equation, i t  i s  only necessary t o  use 

QO and Q1 a t  one s t a t i o n  pas t  t h e  t i p  f o r  t h i s  wing. 

This follows from the  f a c t  t h a t  the  wing comes t o  a point a t  

the  t i p ;  only these  two q u a n t i t i e s  a t  s t a t i o n  8 a r e  necessary 

t o  express completely t h e  p o t e n t i a l  energy a t  the  t i p  s t a t i o n .  



With the above facts in mind, the Stein-Sanders matrix 

equation for the first condition may be written 



where, i n  t h e  no ta t ion  of the  present  paper 

The submatrices used i n  the  above equat ions a r e  def ined i n  

the fol lowing equat ions;  the elements of the  submatrices a r e  

def ined a f t e r  the d e f i n i t i o n  of the  submatricea. 





=r "kl 







The afi elements i n  the a i l )  submatrix a r e  made 

up of the  s t i f f n e s s  p roper t i e s  of the s t r a i g h t  spa r s  ( s p a r s  

perpendlcular  t o  cen te r  l i n e  ), cover shee t ,  and s t r i n g e r s .  
* The equat ion f o r  ski i s  



where 

of spars  No. 1, 3, and 5 a t  s t a t i o n s  7, 4, and 1, I 

r e spec t ive ly ,  should be ha l f  t h e  value given i n  

Table I. This i s  because these  spare end a t  a I 1 
s t a t i o n j  thus,  the  i n t e r v a l  over whioh the  moment of 

1 I i n e r t i a  i s  summed should be 7; 6 and not e . ) C 
X9 

= x coordinate  of the  q t h  spar .  

t = cover shee t  th ickness  (0.0696 i n c h ) ,  

n r i  = cover sheet  height ,  obtained from Table 111. 

c i  = chordwise l eng th  of cover sheet  a t  s t a t i o n  i. 
A I 

Ii = moment of i n e r t i a  of one s t r i n g e r  a t  s t a t i o n  i, 
- I 

obtained from Table IV, 
A 

NI = number of s t r i n g e r s  (on both covers)  a t  s t ~ t i o n  i, 
8 

I ' . I  
I ,. 

obtained from Table IV, 

2 = x coordinate ~f the q t h  s t r i n g e r ,  obtained from 
(l 
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The con t r ibu t ion  of the  cover shee t  i s  given by aki 

where 

The .akI1s a r e  tabula ted  i n  Table V I I I  f o r  k = 1, 2, and 3 

and i = O ,  1/2, 1, . . ., l3/2, 7. 

The P i t s  account f o r  the  s t i f f n e s s  p roper t i e s  of 

the  leading edge spa r  and a r e  ,def insd a s  

where 

Yg1 = moment of i n e r t i a  of t h e  6 t h  apar a t  s t a t i o n  i, 

obtained from Table I. 

Y angle t h a t  spar  No. 6 makes with t h e  cen te r  l i n e  (450).  

The Pi f a  a r e  t abu la ted  i n  Table V I I I  f o r  

i = l a  2, 7. 

The r i b  s t i f f n e s s  I s  aocounted f o r  by the B1 element 

which i s  given by 



where, now 



The "fixed" inf luenae c o e f f i c i e n t  mat r ix  needed t o  

f ind the  eymtnetric modes and f requencies  is  found by 

inver t ing  the As matr ix  i n  equat ion (11). The invers ion  

of t h i s  24 X & matr ix  was done by an IBM 604 automatic 

computing machine a t  Langley F i e l d ,  The machine time 

requi red  f o r  the  invers ion  was 9-l/2 hours. After  

equation (11) is  mul t ip l i ed  through by the  inverse  of the  

A, matrix,  then t h i s  equation becomes 
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Equation (12)  i s  oa l l ed  the  symmetric "fixed" inf luence  

c o e f f i c i e n t  equat ion and g ives  the  genera l ieed  d e f l e c t  ion 

i n  terms of the  genera l ieed  s t a t i c  loads of a wing which i s  

r i g i d l y  clamped a t  the  t r a i l i n g  edge of the  cen te r  l i n e .  

Antisymmetric "fixed* inf luence c o e f f i c i e n t  equation.- 

To determine the  "fixed" s t i f f n e s s  matr ix  of the  wing i n  an 

antisymmetric f r e e - f r e e  mode, the  Stein-Sandera matr ix  

equation f o r  the  second condit ion i s  used. The wing, 

supported i n  the  manner of t he  second condit ion,  i s  shown 

The unknown genera l ized  d e f l e c t i o n s  i n  the matr ix  equation 

f o r  the  second condit ion a r e  aO2, . . a0& . . ., 
\8* and @210 0 0  @27! the  known general ieed loads a r e  



p1.2, . P17, P2i, .1 P27, and Pjl, . . ., Pj7. 
Again, t h e  e q u a t i o n  f o r  @28 has b e e n  dropped because  i t  i s  

n o t  n e c e s s a r y  f o r  t h i s  wing. Now t h e  S te in -Sanders  matrix 

e q u a t i o n  f o r  t h e  second c o n d i t i o n  becomes 



where, i n  the n o t a t i o n  of the present  paper 









The "f ixedn inf luence c o e f f i c i e n t  mat r ix  needed t o  

f i n d  the  antisymmetric modes and f requencies  i s  found by 

i n v e r t i n g  the  A, matr ix  i n  equat ion (13). The Aa matr ix  

was a l s o  inver t ed  on t h e  IBM 604 machine, However, t h e  

machine time requ i red  was only 8 hours s ince  Ag i s  a 

22 x 22 matrix.  After  equation (13) i s  mul t ip l i ed  through 



by the inverse  of the  Ap matrix, then t h i s  equat lon may 

be w r i t  ten 

Equation (4) i s  c a l l e d  t h e  antisymmetric "fixed' inf luence  

c o e f f i c i e n t  equat ion and g ives  the  genera l ized  de f l ec t ion8  

i n  terms of the  genera l ized  s t a t i c  loads of a wing which i s  

simply supported st the  s t a t i o n  poin ts  1 and -1 on the 

t r a i l i n g  edge and has zero de f lec t ion  along tb oenter  line. 



Discussion - of iff ixedtf inf luence coeff i c  i e n t  mat r ices .  - 
The Aso1 and A,-' matr ices  def ined i n  equat ions (12)  

and (14), respec t ive ly ,  do not  give the a c t u a l  inf luence 

c o e f f i c i e n t s ,  t h a t  i s ,  these c o e f f i c i e n t s  do not r e l a t e  the  

a c t u a l  d e f l e c t i o n s  t o  the a c t u a l  s t a t i c  loads.  What they  do 

r e l a t e  i s  the  genera l ized  d e f l e c t i o n s  t o  the  genera l ized  

loads.  It i s  poss ib le  t o  modify and A,-1 so t h a t  

the  a c t u a l  d e f l e c t i o n s  could be found i n  terms of the a c t u a l  

s t a t i c  loads.  However, it i s  more convenient t o  work with the 

equat ions a s  they  s tand even though the  dynamic loads a c t i n g  

on the wing w i l l  have t o  be modified so they  a re  cons i s t en t  

with t h e  genera l ized  loads used i n  equat ions (12)  and (14). 

Free-Free Inf luenue Coeff ic ient  Equations 

The inf luence c o e f f i c i e n t s  f o r  the  f i x e d  wing were 

found i n  equat ions (12)  and (14). In order  t o  determine the  

f r e e - f r e e  n a t u r a l  modes and f requencies  of the wing, i t  i s  

necessary t o  modify thesef f f ixedt t  inf luence o o e f f i c i e n t s .  

This modif i c a t i o n  c o n s i s t s  of making room i n  the inf luence 

c o e f f i c i e n t  mat r ix  f o r  the  genera l ized  d e f l e c t i o n s  of the 

p o i n t s  which were considered f i x e d  i n  de r iv ing  t h e  ltfixed' 

s t i f f n e s s  matr ix .  

The d e f l e c t i o n  of the wing i n  t h e  f i x e d  cond i t ion  

was denoted by fq(x,ym); the d e f l e c t i o n  of the  wing i n  the 
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f r e e - f r e e  oondit ion w i l l  be denoted by w(x,y,) where 

w(x,ym) i s  the  d e f l e c t i o n  of t h e  wing r e l a t i v e  t o  the  plans 

of r e s t  and is  represented  by the  fol lowing power s e r i e s  

In  equation (l5), tom i s  t h e  d e f l e c t i o n  of any a t a t i o n  m 

on the  t r a i l i n g  edge r e l a t i v e  t o  t h e  plane of r e s t ,  tl, 

r ep resen t s  t h e  t w i s t  of the wing, and t2, r ep resen t s  t h e  

parabofic  curvature i n  the  chordwise d i r e c t  ion.  The r e l a t i o n  

between 00, and tom, f o r  the s y m e t r i c  case, i s  shown i n  

the  ske tch  below. 



Symmetric f r e e - f r e e  inf luence c o e f f i c i e n t  equation.- 

The inf luence  c o e f f i c i e n t  matrix,  i n  equat ion ( 1 2 )  i s  

f o r  a  wing which i s  r i g i d l y  clamped a t  the  t r a i l i n g  edge of 

the  cen te r  l i n e .  During a  f r ee - f ree  symmetric v ib ra t ion ,  the  

def l e a t i o n  and s lope  of the  t r a i l i n g  edge of t h e  center  l i n e  

w i l l  not be zero; thus,  SO08 fI0 and PlO8 PZ0 must be 

added t o  equation (12) .  Although a t  t h i n  time, $00 and 

cannot be added t o  equation ( 1 2 ) ,  a t  l e a s t  a  place can be 

provided i n  the matr ix  equat ion so  they can be added l a t e r ,  

It should be not iced  t h a t  the  @ f a  a t  one s t a t i o n  past  t h e  

t i p ,  and e18, which were necessary i n  the  o r i g i n a l  

de r iva t ion  of equat ion (11) a r e  no longer  necessary and t h e  

equat ions containing them can be de le ted .  This i n  the same 

procedure as t h a t  used i n  t h e  chapter   iscu cuss ion of 

Influence Coeff ic ient  ~pproach."  With these  f a c t s  i n  mind, 

the  f ollowing operat ions a r e  nor performed on t h e  A , - ~  

matrix: 

1. The 8 t h  and 1 6 t h  row and column i s  de le ted .  This 

opera t ion  e l imina tes  t h e  equations f o r  e08 and 

2, Two rows and columns of zeros a r e  added s o  the  

1st and 9 t h  row and column ia zero,  This l a  done t o  allow 

room f o r  the  qO0 and c o e f f i c i e n t s -  
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After these  operat ions have been performed on the  

A , - ~  matrix, equation (12)  becomes 

where A, i s  a  24 x 24 matr ix  and i s  t h e  matrfx t h a t  r e s u l t s  

a f t e r  the  previous operat ions on the  A, -' matr ix  have been 

c a r r l e d  out. If t h e  two unknown u o e f f i c i e n t s  f 00 and t10 



are added t o  the  above equation, then equation (16)  can be 

expressed as follows: 

where 

18 = column of 8 ones 

1 = 0,1 ,2#* a a ,  7 

Equation (17 is  ca l l ed  the symmetric f ree - f ree  inf luence 

coef f ic ien t  equation. To determine the modes and frequencies, 

it i s  now necessary t o  f i nd  the dynamic loads and the values 

$00 ~~ *lo' 

Antisymmetric f ree-f ree  influence coef f ic ien t  

equation.- The f ree-f ree  influence coef f ic ien t  matrix 

equation i s  obtained by appropriately modifying the "fixedtt 

influence coef f ic ien t  equation. (See eq. (14). ) During a 

f ree-f ree  antisymmetric v ibra t ion the def lec t ion of the 

center  l i n e  i s  zero, but there w i l l  be a def lec t ion  a t  the 
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s t a t i o n  po in t s  1 and -1 along the  t r a i l i n g  edge. Thw, 

f o r  the antisymmetric case,  t h e  c o e f f i c i e n t  qol and the  

corresponding loading term P i 1  must be added t o  the  matr ix  

equation f o r  the  inf luenoe c o e f f i c i e n t s .  A s  i n  the  symmetrio 

case, equation8 f o r  a08 and a r e  contained i n  

equat ion (4) and now a r e  no longer  necessary. 

The fol lowing operat ions a r e  now performed on t h e  

*a matrix: 

1, The 7 t h  and 15 th  row and column i s  de le ted .  This 

operat ion e l imina tes  t h e  equat ions f o r  and 

2. A row and column of se ros  i s  added so  the  1st row 

and column i s  zero. This i s  done t o  allow room f o r  t h e  

c o e f f i c i e n t .  

Af te r  these  operat ions have been performed on t h e  

*a matrix,  equat ion (4) rill take  on the f o l loning  form: 



where Aa i s  a 2 1  x 2 1 m a t r i x  and is the  matrix t h a t  r e s u l t s  

a f t e r  the  previous operat ions on t h e  A, mat r ix  have been 

c a r r i e d  out.  To obta in  the f r e e - f r e e  anltisymmetric modes. i t  

is  necessary t o  add a r i g i d  body r o t a t i o n  about the  x-axis 

t o  the  above equat ion,  After  t h i s  i s  done, then 

equation (18) w i l l  become 



where 

Equation (19)  i s  u a l l e d  the antisymmetrlc f r e e - f r e e  inf  luencs 

c o e f f i c i e n t  equat ion,  

The Gynamio Loads 

To determine the n a t u r a l  modes and f requencies  of t h e  

d e l t a  wing specimen i t  i s  neoeasary t o  r ep lace  the  s t a t i c  

loads wi th  dynamic loads.  The dynamic loads a t  any point  

x,y on the  wing may be w r i t t e n  

In equation (20), w(x,y) i s  the  d e f l e c t i o n  of any poin t  on 

the wing r e l a t i v e  t o  the plane of r e s t  and i s  represented  by 

the  fol lowing power s e r i e s  
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If the expression f o r  the  d e f l e c t i o n  (eq. ( 2 1 ) )  i s  s u b s t i -  

tu t ed  i n t o  equation (20) ,  and the r e s u l t i n g  equation f o r  t h e  

dynamic loads s u b s t i t u t e d  i n t o  equat ion ( l o ) ,  the  fol lowing 

equat ion f o r  the  genera l ized  dynamic loads a t  any s t a t i o n  y 

i s  obtained: 

Since t h e  $'s a r e  independent of x, t h i s  equation may be 

w r i t t e n  i n  t h e  form 

where 

Equation (22) gives the  genera l ized  dynamic loads a t  any 

spanwise s t a t i o n  y. What i s  wanted i s  the  genera l ized  load 

a t  d i s c r e t e  spanwise s t a t i o n  points .  The procedure used t o  

concentrate  the d i s t r i b u t e d  loads t o  the  s t a t i o n  po in t s  w i l l  

be shown by considering only the  loading due t o  the  term 



After  the  loading due t o  t h i s  term is  found, i t  i s  easy t o  

extend t h e  r e s u l t s t o  the  o ther  terms i n  t h e  equation f o r  

P,(Y). 

Let us consider  f i r s t  the d i s t r i b u t e d  loads,  pz(y  1, 

such a s  caused by the  spars ,  cover shee t  and s t r i n g e r s  and 

then consider  the concentrated loads, pl( y ), t h a t  r e a u l t  

from the  r i b s  being placed between t h e  s t a t i o n s .  To concen- 

t r a t e  t h e  d i s t r i b u t e d  loads t o  a  s t a t i o n  point m, t he  mass 

per inch of the s t r u c t u r e  a t  s t a t i o n  poin t  m is  mul t ip l i ed  

by t h e  d i s t ance  between s t a t i o n s .  Thip procedure i s  shown 

i n  the  ske tch  below, where I s  the mass per inch  a t  the  

mth s t a t i o n .  



The genera l ized  load q a t  s t a t i o n  m will now be 

If the re  are 7 s t a t i o n s ,  then a l l  the  P?'S can be w r i t t e n  

i n  matr ix  form as 

where 



i n  which 

I* 

N i  = number of spa r s  a t  s t a t i o n  i ( inc ludes  spa r  No. 6 ) .  

$i = mass per inch of the  q t h  spar  a t  s t a t i o n  i, obtained 

from Table I. 
- Z 
m = mass per square inch  of the  cover shee t  (0.00696 lb/in.  ). 

A 
m = mass per inch of one s t r i n g e r  (0.01920 lb / in .  ) . 

* When the  mlifa  were ca lcula ted ,  only one ha l f  of t h e  mass 

of spar  No. 1 a t  s t a t i o n  7, spar  No. 3 a t  s t a t i o n  4 and 

spa r  No. 5 a t  s t a t i o n  1 was used. This was because these  

spars  end a t  a s t a t i o n ;  thus,  the i n t e r v a l  over which t h e  

mass was summed should be $ E and not E . 
The oa lcu la t ion  of pi(y) f o r  the  r i b a  i s  complicated 

by t h e  f a c t  t h a t  not  a l l  t h e  r i b s  l i e  on the  s t a t i o n s .  An 

approximation could be made by concent ra t ing  the r i b a  s o  

t h e i r  weight i s  on the  s t a t i o n  poln ts .  It i s  f e l t  t h a t  thisc 

procedure does not  adequately r ep resen t  the  a c t u a l  mas8 

d i s t r i b u t i o n  and consequently does not adequately r ep resen t  

the  dynamic loads.  Therefore, a method i s  presented which 

accounts f o r  the  r i b s  being placed between the  s t a t i o n s  . 
Again, t h e  procedure f o r  obta in ing  due t o  W0 a t  
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s t a t i o n  m i s  shown, and then the r e a u l t s  extended t o  the  

o the r  Y t s  and the o ther  s t a t i o n s .  If & i s  the mass of 

the  r i b  a t  s t a t i o n  m,  then  the  l o c a t i o n  of t h e  r i b  mass 

along the wing w i l l  look l i k e  

The c o n t r i b u t i o n  of the mass a t  s t a t i o n  m t o  w i l l  be 

_ -  I I 1, 1 

If It i s  assumed t h a t  t h e  d e f l e c t i o n  a t  t h e  h a l f  s t a t i o n s  

can be obtained by a  l i n e a r  i n t e r p o l a t i o n ,  then  the cont r ibu-  

t i o n  of the mass a t  the ha l f  s t a t i o n  m - 1 t o  w i l l  be 
2 

I n  the matr ix  equat ion,  only  the  P t s  a t  the whole s t a t i o n s  

a re  used; thus,  it i s  necessary t o  d i s t r i b u t e  the above 

c o n t r i b u t i o n  of the mass a t  t h e  h a l f  s t a t i o n  t o  a  whole 

s t a t i o n .  This  i s  done by assuming t h a t  one ha l f  goes t o  the  

whole s t a t i o n  on the l e f t  and t he  o ther  h a l f  goes t o  the 
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whole s t a t i o n  on the r i g h t .  The equation f o r  4 a t  

s t a t i o n  m w i l l  now be 

The equat ion f o r  t h e  kfs due t o  the r i b s  a t  a l l  the  

s t a t i o n s  may now 

9 0  

$1, 
0 . 

;l6 

be w r i t  t e n  matr ix  form a8 

ahere i1 is  defined on the next page The mas a of t h e  r ib  a t  

s t a t i o n  i, ii, i s  obtained from Table 11. 





Now by combining the  r e s u l t s  juat  obtained, the  equat ion f o r  

the  PI'S f o r  the  spars ,  asver  sheet ,  s t r i n g e r s ,  and r i b s  

may be w r i t t e n  

If a c a r e f u l  inspect ion  i s  made of the  expression f o r  
I 

pn(y)  given by equation (22) ,  i t  i s  seen t h a t  the  equation 

f o r  the  loads,  torques and second momenta a t  a l l  t he  s t a t i o n s  

due t o  the  spars ,  cover sheet  and s t r i n g e r s  w i l l  be  

where 



i n  which 

* f The m k i  s a r e  t abu la ted  i n  Table I X  f o r  k = 1, 2, . . . , 5 
and i = 0, 1, 2, . ., 7. 

I n  the  d iscuss ion  jus t  presented t o  ahow the  method of 

concent ra t ing  t h e  dynamic loads which r e s u l t  from masses 

loca ted  between t h e  s t a t i o n  poin ts ,  only the  r i b s  were 

considered. But, i t  should be remembered t h a t  the re  a r e  

o the r  concentrated masses loca ted  between t h e  s t a t i o n  pointa .  

These masses a r e  the  reinforcements,  spa r  t o  r i b  r i v e t s ,  

shaker attachments, and pickups. These concentrated masses ' 

present  no problem s ince  they can be acuounted f o r  i n  t h e  . . 
same manner a s  the  r i b s .  If Pni r ep resen t s  the  loads 

cauaed by the  r i b a  and concentrated masses, then a l l  t h e  . . 
Pni's may be w r i t t e n  
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TABLF, M 

ELEMENTS OF THE MATRIX DEFINED BY EQUATION (24) 

r 1 * 
Station li m* 2 i  m*3i m*4i x loo2 rn;, x 10-4 

i 
lb  lb-in. lb-in. 2 lb-in. 3 lb-in. 4 

o 41.1278 1875.68 119,166 85,582.5 65,909-1 
1 41.3244 1894.56 120,978 87,32207 67,579.7 
2 35 7325 1400.83 76,324.8 46,728.3 30,561.3 
3 29.3469 952 372 41,296.1 20,420.0 10,741.3 
4 22.3516 536.832 18,444.2 7,095 -53 2,910.22 
5 1.5 4279 240.865 3,521.20 1,395 06 372 152 
6 7.40026 59 9939 720 .U5 95 4556 13.3428 
7 1.82504 o o o o 

I I J 



a. 

where Mk is defined on the next page. The Gi elements . . 
i n  t h e  Mk matr ix  a re  

where 

m(o)(xp,yi) = concentrated mass a t  the  point  xp, y i ,  

obtained from Tables V and VII 

= (rn(r)(xp,yi) + m(t)(xp,yi)). 

.* 
The a r e  t abu la ted  i n  Table X f o r  k = 1, 2, a ., 5 

and i = 0, 1/2, 1, . . ., l3/2, 7. 

The equation f o r  the  dynamic loada due t o  the  spars ,  

csover shee t ,  s t r i n g e r s ,  r i b s ,  r e in f  orcements, s p e  t o  cover 

r i v e t a ,  shaker attachments, and pickups i s  obtained by 

adding equat ions (24 ) and (25)  s o  t h a t  





TABLE X 

ELEMENTs OF TRE MATRIX DEFINED BY EQUATION (25) 

r I . . . . . . . . . . 
Stat ion mli %i m4i x lo-B mgi x lo-k I m3i 

i 
lb lb-in. lb-in. lb-in.3 lb-in. 4 - 

o 3.94690 211.262 14,982.9 11,847.3 9,917-19 
112 3 -46790 165.278 10,568.5 7,609 -43 5,848.82 
1 13.6952 667.504. 44,861.0 337857-2 277 255 5 

312 2 99762 130.691 79643.56 5,031.62 37535.15 
2 2 53836 loo. 768 5,364 -99 3,213.82 2,054.36 

6.25518 240 - 373 12,34795 6,925.12 4,121.78 512 
1.83293 3 58.2476 2,481.98 1,189.01 607 537 
1.48624 41.4483 1 7  550 07 651.508 291.967 7/2 
3.31127 4 79 3129 2,943.22 1,205.43 523.628 

9/2 .920960 18.2723 486.674 145.685 46 .5177 
5 .684168 10.8864 232 725 55 8540 14.2820 

11/2 3.17625 22.5150 495.184 113.423 26.4410 
6 .284872 2.25625 24.0667 2.88801 .369665 

1312 .116360 .454080 2.42176 .145306 90092995 
7 70 0 0 0 0 



where 

Free-Free Modes and Frequenciee 

All t h a t  remains now t o  determine the n a t u r a l  modes 

and frequencies  i s  t o  s u b s t i t u t e  the  general ized dynamic 

loads i n t o  the  f r ee - f ree  inf luence c o e f f i c i e n t  equat ions and 

determine t h e  value of the  unknown general ized def l e c t i o n s  . 
This w i l l  y i e l d  a matr ix  equation from which the modes and 

f r eauenc ie r~  can be found bs a ~ ~ l s i n ~  a matrix i t e r a t i o n .  I - - -  

the ma 

Symme t r i o  f r e e -  

. t r i x  equation wl 

- f r ee  - 
nich 

" - 
mod , -  

y i e  1 

,es and frequencies.-  Tc -- 
ds the symmetric f r ee - f r  

modes and f requencies ,  the dynamic loads given by equation (26) 1 
a r e  f i  rs t  s u b s t i t u t e d  i n t o  I t he  symmetric f r e e - f r e e  inf 'lu 

c o e f f i c i e n t  equat ion (eq. (17) ) t h i s  y i e l d s  

eOO and can be solved f o r  by considering the 

dynamic equi l ibr ium condi t ions  which the symmetric f r ee - f ree  
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wing must s a t i s f y .  One dynamic equi l ibr ium condit ion is  t h a t  

the  sum of a l l  the  dynamio Ioada must be zero 

The o the r  dynamic equi l ibr ium condit ion i s  t h a t  t h e  sum of 

the  moments of a l l  t he  dynamic loads about the  y-axis must 

be zero 

Equations ( 2 8 )  and (29)  may be w r i t t e n  i n  matrix form as 

and 
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When t h e  dynamic equi l ibr ium condit ion given by equation (28a) 

i s  appl ied  t o  equat ion (27 ), the fo l lowing r e l a t i o n  is  

obtained 

and when t h e  dynamic equi l ibr ium condi t ion  given by 

equation (29a)  i s  appl ied t o  equation (27) 

The above two equations may be w r i t t e n  i n  the fol lowing 

matr ix  form 

where 

Now solv ing  f o r  too and y i e l d s  



where 

4 

Now that the values of 100 and which satiafy the 

dynamlo equilibrium conditions have been obtained, it is 

necessary to substitute them into equation (27). This gives 

where I, is a 24 x 24 unit matrix. Although equation (32) 

is correct as it stands, It may be written in a simplier 

form. If the C8 matrix is written 



then the D, matrix may be written, after simplificat ion 





where 

By using the  above nota t ion ,  the  m i l ,  m u  and m22 

parameters def ined by equation (30) may be w r i t t e n  

The symmetric f r e e - f r e e  modes and f requencies  a re  now 

found by applying a matr ix  i t e r a t i o n  t o  equation (32). For 

t h i s  prooess, an IBIa CPC automatic computing machine was 

used, The f b a t  f o u r  modes and frequenoies  were found, The 

machine performed each i t e r a t i o n  i n  5 minutes, F o r  the  

f i r s t  mode, 15 i t e r a t i o n s  were used, f o r  the  second, 

25 i t e r a t i o n s ,  f o r  t h e  t h i r d ,  35 i t e r a t i o n s ,  and f o r  t he  

f o u r t h  mode, 50 i t e r a t i o n s  were used. Sinoe Wielandt ls  

sweeping method was used f o r  t h e  second, t h i r d  and f o u r t h  

modes, t h e  mode shapes obtained i n  the  matr ix  i t e r a t i o n  were 

t r ans f  ormed modes. To obtain t h e  t r u e  modes, an IBM 604 

machine was used* 

Antisymmetric f r e e - f r e e  modes and f requencies  ,- The - 
antisymmetric f r e e - f r e e  modes and f requencies  a r e  found by 

subs t i  t u t i n g  the dynamic loads i n t o  equat Ion ( 19) ,  determining 
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the  unknown c o e f f i c i e n t  tO1, by considering t h e  dynamic 

equi l ibr ium condit ion,  and then applying a matr ix  i t e r a t i o n  

t o  the  r e s u l t i n g  equation. The expression f o r  the  a n t i -  

symmetric dynamic loads i s  obtained from equation (26) by 

s t r i k i n g  out the  l s t ,  9 t h  and 1 7 t h  row and column of t h e  

M matrix.  This y i e l d s  t h e  fol lowing matr ix  equation f o r  

the  an t  isymtnetric dynamic loads 

where 

g =I, 2, . *, 7 

The s u b s t i t u t i o n  of equat ion (33 ) i n t o  equat ion (19) y i e l d s  

The dynamic equi l ibr ium condi t ion  f o r  the a n t i -  

symmetric case i s  t h a t  t h e  sum of t h e  moments of the dynamic 

loads about the  x-axis must be zero 



This equation can be written in matrix form as 

or, by using equation (33) 

If the equation for $ (eq. (34) )  is introduced into 
equation ( 35 ), then the dynamic equilibrium condition for 

the antisymmetric case becomes 

Solving for tO1 from the above equation and substituting 

it into equation (34) yields 



where Ia is a 21 x 21 unit matrix. After a few manipula- 

tions, the Ca matrix may be written 

where 

Now by using the above value of Ca in equation (36 ), the 

antisymmetric free-free modes and frequencies of the wing 

can be determined by using a matrix iteration. As in the 

symmetrical case, automatic computing machines were used to 

carry out the matrix iteration. Approximately the same number 

of iterations were required for the antisymmetrio case as 

were required for the symmetric case. 

Discussion - of parameters,- At this point, the phyaical 

significanoe of the mil, m12 and m22 parameters defined 

by equation (30) should be brought out. The mil parameter 

ia simply the mass of one half of the wing, the ml2 

parameter is the moment of the mass about the y-axis, and the 

m22 parameter is the second moment of the mass about the 

y-axis. The center of gravity of the wing is simply m12/mll. 
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The weight and cen te r  of g r a v i t y  of t h e  wing were dstermin 

by measurements. A comparison of the measured and calculated" ; ' , ,  ' 

mra i s  shown below. 

Measured 

. . . . . . . . . . . . . .  2mll* l b  435.2 
2m12# lb- in ,  . . . . . . . . . . .  

2 . . . . . . . . . . . .  2%2 8 lb-in.  

cen te r  of g rav i ty ,  in .  . . . . . .  35.5 

Comparf s on With Experimental Resul ts  

The t h e o r e t i c a l  n a t u r a l  f r e e - f r e e  modes and 

f requencies  of the  bu i l t -up  d e l t a  wing specimen were obtaine 

by applying a matr ix  i t e r a t i o n  t o  equat ion (32) .  f o r  t h e  

s p e t r i c  modes and frequencies ,  and t o  equation (361, f o r  # '  

t he  antisymmetric modes and f requencies ,  The f i r s t  f o u r  

f requencies  obtained from these  equat ions along wi th  the  '1 
experimental  f requencies  and the  percentage e r r o r  a r e  

l i s t e d  on the  next page. 



The mode ahapes as w e l l  a s  the  frequencies  were 

obtained i n  t h e  matr ix  i t e r a t i o n .  However, the  mode shapes 

obtained from the matr ix  i t e r a t i o n  were the  $ c o e f f i c i e n t s .  4 

These c o e f f i c i e n t s ,  f o r  the  f i r s t  four  a y m e t r i c  and a n t i -  

symmetric modes, a r e  tabula ted  i n  Table X I .  

The node l i n e s  were found by s e t t i n g  t h e  d e f l e c t i o n  

equal  t o  zero and so lv ing  f o r  the  chordwise loca t ion  of zero 

def lec t ion ,  o r  the  fol lowing equation was solved f o r  x 

A p l o t  of the t h e o r e t i c a l  and experimental  node l i n e s  f o r  

the symmetric modes i a  given i n  Figure 6 and f o r  the  

antisymmetric modes i n  ~ i g b r e  7 .  

Symmetric Frequencies 
1 

Antisymmetric Frequenuy 

k 
error 

7.12 

18.58 

22.05 

27.72 

Mode 

1st 

2nd 

3rd  

4 t h  

$ 
error 

8*4$ 

12.77 

27.08 

27.95 

Theor. 
f r e q .  

CPS 

56.70 

103.4 

166.6 

216.5 

Mode 

1 s t  

2nd 

3rd 

4 t h  

Exp. 
f r e q .  
c Pa 

43.3 

88.8 

122.8 

164.2 

Exp. 
f r e q .  
CPS 

52.2 

91.7 
131.1 

169.2 

Theor. 
f r e q .  

CPS 

46.38 

105.3 

4 9 . 9  
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TABLE X I  

THE * COEXTICIFXCS FCB SYMMETRIC AND A N T I S ~ I C  MODES 

Station 
i 

O 
1 
2 
3 
4 
5 
6 
7 

Station 
i 

0 
1 
2 
3 
4 
5 
6 
7 

L 

First  symmetric mcde 

rot 
-1.4965 
-1.3885 
-1.0724 - .5262 

.2606 
1.2694 
2.hk02 
3.6945 

First antisymnetric mode Second symmetric mode 

qoi 

0.7358 
.6889 
.5W 
.3644 
.1214 - .1112 

- .2907 - .3899 

Second antisynrneric mode 

* ,xlo2 

2.L.599 
2.3452 
2.0242 
1.5006 
.7709 

-.1266 
-1.1842 
-1.5109 

*2iX1~4 

0 
0.0017 - .I392 - .2562 - .2058 

.1118 

.608 
5.0698 

*oi 

O 
-0.0312 - ,1154 - .2687 
- .5137 
- 3 6 2 5  
-1.2995 
-1.7963 

0. 
0.3181 

-6018 
.7396 
.6272 
.1908 

- .5527 
-1.5264 

* 2 i ~ 1 ~ 4  

-0.5541 
- -5397 
- -5249 
- .5695 - .7284 
-1.0453 
- -9527 

. -6.8700 

slix 102 

-1.7959 
-1.8697 
-2.1403 
-2.5116 
-2.9068 
-3.2928 
-3.5689 
-3.8409 

V , X ~ O ~  

O 

0.5752 
1.3131 
2.1039 
2.8935 
3.6493 
4.3408 
4.5575 

Third symmetric mcde 

w21 x 104 

1.4878 
1.5642 
1.8523 
2.1927 
2.3618 
2.0978 
.6951 

-3.2428 

t,x102 

O 
-0.6477 
-1.3888 
-1.9110 
-1.9885 
-1.4828 - -4515 

.3366 

- 
* 

-0.1201 
-.0367 

.I792 

.495 
-5669 
-3694 - .2817 

-1.3968 

Third antisymmetric mode Fourth synunetric mode 

* 2 1 ~ 1 ~ 4  

0 
-0.0030 

-1913 
.4005 
.5835 
-8543 

1.40U 
lo.0000 

lo, 

0 
-0.0643 - .1578 - .2096 - 2107 
-.2266 
- .3680 - -7626 

lo, 

-1.dci9 
-.go18 - .4795 

.11& 

.6753 

.8517 

.4059 - .62& 

Fourth antisymnetric mode 

x 2  

-0.9259 
-1.1028 
-1.5427 
-1.9438 
-1.990 
-1.2225 

.2893 
1.9031 

$Oi 

0 
-0.0964 - .lo62 
- .0097 

.1522 
-2373 
.0574 - .5128 

o 4  

1.5852 
1.6473 
1.7752 
1.7217 
1.3760 

.9&9 
1.7277 

16.1250 

l u x l d  

0 
-0.1502 

.2960 
1.2590 
2.6305 
4.1626 
5.3467 
6.2547 

l l i x l o 2  

6.0315 
5.4315 
3.4143 

.0047 
-4.1625 
-7.4643 
-7.9363 
-6.&65 

~ ~ ~ x l o ~  

0 
0.0042 - .6281 - 1.8514 

- 3.3897 
-4.3593 - 2.1608 
io.oo00 

1 2 i ~ ~ 0 4  

-6.1120 
-5.5649 - 3.6438 - .2265 

4.0920 
7.3826 
6.1574 

10.0000 

f l ix102  

0 
0.2070 

.0798 
- .3736 
-.9523 
-1.1913 - .5948 

.7359 

$ 2 1 ~ i o 4  

0 
-0.0012 

.2517 

.6835 
1.0543 
1.0629 
.9922 

9.6160 







CHAPTER VI 

DISCUSS I O N  OF RESULTS 

The theo re t i ca l  frequencies obtained f o r  the f r ee -  

f r e e  v ibra t ion of the buil t -up wing specimen do not  compare 

very wel l  with the  experimental frequencies.  However, one 

thing t h a t  should be noticed i n  the  frequency comparison i s  

t h a t  the t heo re t i ca l  frequencies are always higher than the 

experimental frequencies.  A p lo t  of the t heo re t i ca l  and 

experimental frequencies f o r  the  f i r s t  four  symmetric and 

antisymmetric modes i s  ahown i n  Figure 8. From t h i s  Figure, 

it i s  seen t h a t  the t heo re t i ca l  frequencies follow the exper- 

imental frequencies n icely ,  but t h a t  they become progres- 

s ive ly  higher as  the  modes increase. The reason f o r  the 

t heo re t i ca l  frequencies being too high can be due t o  two 

things: (1) the s t ruc tu re  of the w i n g ,  as  predicted by the  

Stein-Sanders method, i s  too a t i f f ,  and (2 )  the mass of the 

wing i s  too low. In deriving the s t i f f n e s s  matrix, S t e i n  

and Sanders assumed t h a t  the spars  and r i b s  could be repre-  

sented by simple beam theory which neglects  t ransverse shear 

def lec t ions .  Also, the shear l ag  which e x i s t s  i n  the  cover 

sheet i s  neglected. If the transverse shear def lec t ions  and 

the cover sheet shear l ag  were taken in to  account, the f r e -  

quencies would be reduced with the frequencies of the higher 

modes being reduced more tban the frequencies of the lower 

mode s . 
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Theoretical frequencies 
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Frequency 

CPS 

M o d e  

FIGURE 8 

FREQUENCIES FOR BUILT-UP DELTA WING SPECIMEN 



Although the wing mass used i n  the t heo re t i ca l  

analys is  i s  almost the same as  the measured mass, the mass 

of a i r  t ha t  surrounds the wing and i s  s e t  i n  motion during 

a v ibra t ion t e s t  was neglected i n  the  analys is ,  If t h i s  

mass of a i r  were added t o  the wing mass, then the  t heo re t i ca l  

frequencies would be reduced. Estimates show tha t  the a i r  

mass would reduce the f i rs t  frequencies by about 5 per cent ,  

but would have a smaller e f feu t  on the hlgher frequenuies. 

Although the t heo re t i ca l  frequencies are much higher 

than the experimental frequencies,  it i s  seen from Figures 

6 and 7 tha t  there i s  a remarkable agreement between the 

t heo re t i ca l  and experimental node l i ne s .  

A source of e r ro r  t ha t  has not  been considered yet 

i s  the  power s e r i e s  used for  the  def lec t ion  shape. Since 

only three  terms were used, the def lec t ion  of the wing was 

l imi ted t o  a transverse displacement, t w i s t ,  and parabolic 

chordwise curvature. It may be t h a t  three  terms do no t  allow 

suf f ic ien t  f l e x i b i l i t y  of the s t ruc ture  and more terms 

- should be used; however, the excellent  agreement between the 

- t heo re t i ca l  and experimental node l i n e s  makes t h i s  pos s ib i l i t y  

unlikely. 

A s  a fu r ther  source of e r r o r s  we might look a t  the 

methods by which the Stein-Sanders equations were obtained. 

In  order t o  keep the algebra t o  a minimum, trapezoidal  

in tegra t ion  was used and der ivat ives  were replaced by 
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f i n i t e  d i f f e r e n c e s .  For these  procedures t o  be v a l i d  it is  

neoessary t h a t  the  f u n c t i o n  t o  be i n t e g r a t e d  or d i f f e r e n t i a t e d  

be f a i r l y  smooth. The i n t e g r a t i o n  involves the moment of 

i n e r t i a  and the  d e f l e c t i o n  and de r iva t ivea  of the def lec t ion ;  

it i s  n o t  expected t h a t  t h e  inte@;rat ion w i l l  introduce much 

e r r o r .  However, t h e  numerical d i f f e r e n t i a t i o n  which involves 

t h e  d e f l e c t i o n  and the d e r i v a t i v e s  of the d e f l e c t i o n  i s  l i k e l y  

t o  cause l a rge  e r r o r s .  This  i s  e s p e c i a l l y  t r u e  of the  

d e r i v a t i v e s  of the c o e f f i c i e n t s  which as  can be seen 

i n  Table X I  do not  form a very smooth curve, e s p e c i a l l y  f o r  

the  higher modes. 



CHAPTER VII 

CONCLUDING REMARKS 

A comparison has been presented between the theore t ica l  

and experimental na tu ra l  f ree - f ree  modes and frequencies of 

a built-up d e l t a  wing specimen. The method of obtaining the 

t heo re t i ca l  modes and frequencies was based on the  influence 

coef f ic ien t  approach, where the influence coef f ic ien t s  were 

obtained from the Stein-Sanders method. 

The r e s u l t s  obtained from the t heo re t i ca l  method show 

tha t  i n  a l l  cases the t heo re t i ca l  frequencies were too high, 

but t h a t  the agreement between the t heo re t i ca l  and experi- 

mental node l i n e s  was excel lent .  



REFERENCES 



REFERENCES 

1. Levy, Samuel, " S t r u c t u r a l  Analysis and Influence 
Coef f i c i en t s  f o r  Del ta  Wings,n Journal - of the  
Aeronautical  Sciences,  Vol. 20, No. 7, ~ul-953. 
PP 449-454. 

2 . Reissner ,  E r i c ,  and Manuel S te in ,  "Torsion and 
Transverse Bending of Cant i lever  p la t e s , "  - NACA 
TN 2369, 1951. - 

3 Schuerch, Hans U . ,  "Zur S t a t i k  von d ' k e n  Flugzeug- 
Tragflgchen," - M i t t .  E. 2,  -- I n s t .  fiir F lugzeugs ta t ik  
und Flugzeugbau an der E ,T.g., Leemann ( Ziirich) , - --- 
1950. 

40 Schuerch, Hans U. ,  n S t r u c t u r a l  Analysis of Swept, 
Low Aspect Rat io,  Multispar A i r c r a f t  Wings," 
Aeronautical  En i n e e r i n  Review, Vol. 11, No. 11, 
-pp * g  

5 . Sezawa, Katsutada, %n the L a t e r a l  Vibration of a 
~ e o t a n ~ u l a r  p l a t e  Clamped a t  Four E d g e ~ , " ~ R e t o r t  
of the  Aeronautical  Research I n s t i t u t e ,  Tokyo -- 
Imperial  Universi ty ,  Vol. V I ,  4., No. 70, Apri l  1931. 

60 Ste in ,  Manuel, J. Edward Anderson, and John M. 
Hedgepeth, "Deflect ion and S t r e s s  Analysis of Thin 
So l id  Wings of Arbi t ra ry  Plan Form With P a r t i c u l a r  
Reference to  Del ta  ~ l n g s , "  - NACA Report 1131, 1953. 
(supersedes NACA TN 2621) 

7. S te in ,  Manuel, and J, L. Sanders, Jr., "A Method f o r  
Deflect ion Analysis of Thin Low-Aspect-Ratio wings," 
NACA TM 3640, 1956, , --- - 

' '$: " , ' , ' :  ' 1, y 1  , 8 :  , ;  , , 
8 ,  , 8 , , ' m ' ' , I 8 ,,7 1 -a '  'I Y 

8. Timoshenko, Stephen, Vibrat ion Problems i n  Enatneering. 
Second e d i t i o n ,  D. Van Nostrand Co., ~nc., 1937. 

9 Wielandt, H . ,  Contr ibut ions -- t o  the Mathematical 
Treatment of Complex Eigenvalue Problems. Par t  11. 
The I t e r a t i v e  Method f o r  Not Self-Adjoint Linear 
Eigenvalue Problems. Reports and  rans slat ions 
No. 42, B r i t i s h  M.A.P. n l k e n r o d e ,  Apr i l  1, 1946. 
(issued by J o i n t  I n t e l l i g e n c e  Objectives Agency 
with F i l e  No. B.I.G.S. -11.) 



10,  . W i l l i a m s ,  D., "Recent Developments i n  the 
S t r u c t u r a l  Approach t o  Aerolas t ic  ~ r o b l e m s , "  
Journal  of the Royal Aeronautical  Soc i e t g ,  June 19 54, 
p P . - p 8 7  

11 . W i l l i a m s ,  Ed. L., "Theore t ica l  and Experimental E f f e c t  
of Sweep Upon the S t r e s s  and Def lec t ion  D i s t r i b u t i o n  
of A i r c r a f t  Wings of High S o l i d i t y .  Par t  6 .  The 
P l a t e  Problem f o r  a Cant i lever  Sector  of Uniform 
Thickness,' AF TR NO.  5761, Par t  6 ,  A i r  Mater ia l  
Command, U. S .  A i r  Force, Nov, 19500 

12. Young, D., wVibrat ion of Rectangular P l a t e s  by the  
R i t z  Method," Journal  of Applied Mechanics, Trans. 
A.S.M.E,, Vol. 17, NO.T, 1950, Pp. 448-453. 

13 Anon., Alcoa Aluminum - and i t s  Alloys. Aluminum 
c o r n p a s  America, 1 9 5 0 7  



APPENDIX 



APPENDIX A 

where 

DERIVATION O F  STIFPNESS COEFFICIENTS 

In  the  body of t h i s  paper the method used by S t e i n  

and Sanders i n  re ference  7 t o  ob ta in  the s t i f f n e s s  c o e f f i -  

c i e n t s  f o r  a low-aspect-ratio wing has  on ly  been b r i e f l y  

mentioned. It i s  t he purpose of t h i s  appendix t o  show i n  

g r e a t e r  d e t a i l  how the s t i f f n e s s  c o e f f i c i e n t s  a s  given by  

equat ions (11) and ( 1 3 )  were der ived.  

A s  the energy approach was used and the  wing was con- 

s ide red  t o  be composed of cover shee t s ,  spa r s  and s t r i n g e r s ,  

and ribs, t he  f i r s t  thing requ i red  is  the  s t r a i n  energy 

expressions of these  components i n  terms of t h e  d e f l e c t i o n  

of the  n e u t r a l  surface.  If q r e p r e s e n t s  the  l a t e r a l  

d e f l e c t i o n  of the n e u t r a l  surfaoe,  then the s t r a i n  energy 

expressions become, f o r  the cover shee t s  



i n  which the  s u b s c r i p t s  u  and 2 r e f e r  t o  the upper and 

lower cover s h e e t s ,  r e s p e c t i v e l y .  For the  spars  and s t r i n g e r s  

where y, is  the  end s t a t i o n  and I, is  the  moment of 

i n e r t i a  of t h e  sth spar  o r  s t r i n g e r .  I n  the above energy 

expression s l an ted  spars  and s t r i n g e r s  have not  been con- 

s idered ,  but  t h e i r  e f f e c t s  can e a s i l y  be accounted f o r  by a  

modif icat ion of t h i s  expression.  For the r i b s  

where c ( y r )  i s  the  length  and I, i s  the  moment of 

i n e r t i a  of the r t h  r i b .  

The p o t e n t i a l  energy funct ion  of the  t r ansverse  loads 

of i n t e n s i t y  p ( x , y )  is  

The p o t e n t i a l  energy funot ion  which i s  t o  be minimized t o  

ob ta in  the  equi l ibr ium equat ions i s  

The method used by S t e i n  and Sanders t o  minimize the  

above expression i s  f i r s t  t o  r ep lace  t h e  spanwise i n t e g r a t i o n  
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by a  summation In accordance with the well-known t r apezo ida l  

r u l e ,  The expression f o r  the d e f l e c t i o n  of the  n e u t r a l  

surface is  then  replaced by i t s  equivalent  power s e r i e s  and 

t h e  r e a u l t i n g  d e r i v a t i v e s  w r i t t e n  i n  d i f fe rence  form. Once 

this has  been done then  the  minimization p r o m a s  can be 

appl ied  t o  y i e l d  a  s e t  of equat ions from the r e l a t i o n  

The r e s u l t i n g  s e t  of equat ions i s  expressed i n  matrix form 

by equat ion  (11) f o r  the symmetric oase and by equat ion (13)  

f o r  the antisymmetric case .  The procedure f o r  s e t t i n g  up 

t h e  matrix equat ions has already been shown i n  d e t a i l  f o r  a  

s t r a i n  energy term, f o r  a  spar  o r  s t r i n g e r ,  i n  Chapter I V  

when one term i n  the  power s e r i e s  i s  used. 

Since the loads  e n t e r  so predominantly i n t o  t h e  

c a l c u l a t i o n s  it i s  f e l t  worth while t o  consider  the minimi- 

za t ion  of the p o t e n t i a l  energy funct ion  of the t r ansverse  

loads f o r  the symmetric case when t h r e e  t e rms  of t h e  power 

s e r i e s  f o r  the  d e f l e c t i o n  a r e  used. In  t h i s  way i t  can be 

seen how t h e  loads ,  moments, and second moments e n t e r  i n t o  

the c a l c u l a t i o n s .  After t h e  expression f o r  the p o t e n t i a l  

energy func t ion  of the t ransverse  loads i s  in t eg ra ted  by 

us ing  the t r apezo ida l  r u l e  and the  d e f l e c t i o n  q replaced 

by the power s e r i e s ,  t h e  following expression is  obtained 



A minimization of n with respect t o  @20 
4 P y i e l d s  

with r e spec t  t o  eO1 y i e l d s  

and, wi th  r e spec t  t o  ern 

- - -  n-l 

b@nm 

For all the @ I s  the  above equat ion can be w r i t t e n  i n  matrix 

form a s  



where 

i n  which 

A t  the end s t a t i o n s ,  one-half t h e  value of p,(g,)  i s  used. 

This accounts f o r  the one-half term which a r i s e s  i n  the 

t r apezo ida l  i n t e g r a t i o n .  




